Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.515
Filter
1.
Food Res Int ; 186: 114333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729693

ABSTRACT

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Subject(s)
Acrylamide , Asparaginase , Asparagine , Coffea , Coffee , Taste , Acrylamide/analysis , Asparagine/analysis , Coffea/chemistry , Coffee/chemistry , Humans , Volatile Organic Compounds/analysis , Cooking/methods , Alkaloids/analysis , Chlorogenic Acid/analysis , Caffeine/analysis , Male , Food Handling/methods , Maillard Reaction , Hot Temperature , Chromatography, High Pressure Liquid , Seeds/chemistry , Female
2.
Food Res Int ; 186: 114346, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729720

ABSTRACT

Specialty coffee beans are those produced, processed, and characterized following the highest quality standards, toward delivering a superior final product. Environmental, climatic, genetic, and processing factors greatly influence the green beans' chemical profile, which reflects on the quality and pricing. The present study focuses on the assessment of eight major health-beneficial bioactive compounds in green coffee beans aiming to underscore the influence of the geographical origin and post-harvesting processing on the quality of the final beverage. For that, we examined the non-volatile chemical profile of specialty Coffea arabica beans from Minas Gerais state, Brazil. It included samples from Cerrado (Savannah), and Matas de Minas and Sul de Minas (Atlantic Forest) regions, produced by two post-harvesting processing practices. Trigonelline, theobromine, theophylline, chlorogenic acid derivatives, caffeine, caffeic acid, ferulic acid, and p-coumaric acid were quantified in the green beans by high-performance liquid chromatography with diode array detection. Additionally, all samples were roasted and subjected to sensory analysis for coffee grading. Principal component analysis suggested that Cerrado samples tended to set apart from the other geographical locations. Those samples also exhibited higher levels of trigonelline as confirmed by two-way ANOVA analysis. Samples subjected to de-pulping processing showed improved chemical composition and sensory score. Those pulped coffees displayed 5.8% more chlorogenic acid derivatives, with an enhancement of 1.5% in the sensory score compared to unprocessed counterparts. Multivariate logistic regression analysis pointed out altitude, ferulic acid, p-coumaric acid, sweetness, and acidity as predictors distinguishing specialty coffee beans obtained by the two post-harvest processing. These findings demonstrate the influence of regional growth conditions and post-harvest treatments on the chemical and sensory quality of coffee. In summary, the present study underscores the value of integrating target metabolite analysis with statistical tools to augment the characterization of specialty coffee beans, offering novel insights for quality assessment with a focus on their bioactive compounds.


Subject(s)
Coffea , Coffee , Food Handling , Seeds , Brazil , Coffea/chemistry , Seeds/chemistry , Food Handling/methods , Coffee/chemistry , Alkaloids/analysis , Chromatography, High Pressure Liquid , Humans , Taste , Principal Component Analysis
3.
Pak J Pharm Sci ; 37(1(Special)): 205-213, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747271

ABSTRACT

In this study, a sensitive high-performance liquid chromatography detector was established and validated for the simultaneous determination of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone in Liuwei Muxiang Capsules. The analysis was achieved on CHANIN 100-5-C18-H column (5µm, 250 mm×4.6 mm) with the temperature of 30oC. Gradient elution was applied using 0.1% phosphoric acid solution-methanol-acetonitrile (50:50) as mobile phase at the flow rate of 1.0 mL/min. The determination was performed at the wavelength of 225 nm (detecting geniposide), 254 nm (detecting ellagic acid), 343 nm (detecting piperine) and 225 nm (detecting costunolide and dehydrocostuslactone) along with the sample volume of 10µL. The linear ranges of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone demonstrated good linear relationships within their respective determination ranges. The average recoveries were 100.04%, 99.86%, 99.79%, 100.17% and 100.41%, respectively. RSD% was 1.3%, 1.2%, 1.2%, 1.2%, 1.5%, respectively. The developed method was proved to be simple, accurate and sensitive, which can provide a quantitative analysis method for the content determination of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone in Liuwei Muxiang capsules.


Subject(s)
Alkaloids , Benzodioxoles , Capsules , Drugs, Chinese Herbal , Ellagic Acid , Iridoids , Lactones , Piperidines , Polyunsaturated Alkamides , Chromatography, High Pressure Liquid/methods , Benzodioxoles/analysis , Polyunsaturated Alkamides/analysis , Piperidines/analysis , Piperidines/chemistry , Alkaloids/analysis , Lactones/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Iridoids/analysis , Ellagic Acid/analysis , Reproducibility of Results , Sesquiterpenes/analysis
4.
Sci Rep ; 14(1): 10424, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710752

ABSTRACT

The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.


Subject(s)
Alkaloids , Amino Acids , Anti-Bacterial Agents , Catechin , Tea , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Catechin/analysis , Tea/chemistry , Amino Acids/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alkaloids/pharmacology , Alkaloids/analysis , Alkaloids/chemistry , Food Storage/methods , Escherichia coli/drug effects , Camellia sinensis/chemistry
5.
Forensic Sci Int ; 359: 112030, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657324

ABSTRACT

The use of 3,4-methylenedioxymethamphetamine (MDMA) in drug-facilitated sexual assault (DFSA) is not uncommon. Indeed, the effects associated with the use of this substance may lead to disinhibition. Several synthetic cathinones, such as mephedrone or methylone, also possess marked entactogenic properties. This manuscript aims to (i) report a DFSA case involving a novel cathinone derivative, namely N-ethyl-pentedrone (NEPD) and (ii) review previously reported DFSA cases involving synthetic cathinones. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), NEPD was detected in both plasma and urine collected from a 36-year-old male who had been victim of DFSA. Furthermore, an exhaustive, non-period-specific English-language literature search was performed using several different electronic databases to identify DFSA cases involving synthetic cathinones. Overall, five synthetic cathinones have been associated with DFSA:methylenedioxypyrovalerone, 4-methylethcathinone, α -pyrrolidinopentiophenone, mephedrone, α -pyrrolidinohexiophenone, and methylone, which appears to be the most frequently reported. Methylone is the ß-keto analog of MDMA, with which it shares substantial pharmacological similarities. Indeed, the pharmacological effects of methylone are similar to those associated with MDMA. By contrast, little is known regarding NEPD's pharmacological effects in humans. Based on subjective reports, NEPD can produce both positive and negative effects in human. Unlike what is reported in the case of methylone or mephedrone, only a small minority of NEPD users report slightly entactogenics effects. Such properties theoretically make NEPD more suitable for use in a chemsex context than in DFSA context; even though, the boundary between these two specific forms of sexualized drug use can sometimes appear tenuous.


Subject(s)
Alkaloids , Mass Spectrometry , Humans , Male , Adult , Chromatography, Liquid , Alkaloids/analysis , Designer Drugs/adverse effects , Designer Drugs/analysis , Pentanones/chemistry , Rape
6.
Huan Jing Ke Xue ; 45(5): 2748-2756, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629538

ABSTRACT

It is a new approach to identify legal or illegal use of morphine through information on municipal wastewater. However, the sources of morphine in wastewater are complex, and distinguishing the contribution of different sources has become a key issue. A total of 262 influent samples from 61 representative wastewater treatment plants in a typical city were collected from October 2022 to March 2023. The concentrations of morphine, codeine, thebaine, papaverine, noscapine, and monoacetylmorphine were analyzed in wastewater and poppy straws. Combined with the proportion of alkaloids in poppy straws, the source analysis of alkaloids in wastewater was analyzed using the ratio method and positive matrix factorization model (PMF). Only five alkaloids were detected in wastewater, and monoacetylmorphine, a metabolite of heroin, was not detected. The concentrations of morphine and codeine were significantly higher than those of noscapine, papaverine, and thebaine. By constructing the ratios of codeine/(morphine + codeine) and noscapine/(noscapine + codeine), the source of poppy straw could be qualitatively distinguished. The PMF results showed that three sources of morphine for medical use, poppy straw, and codeine contributed 44.9%, 43.7%, and 9.4%, respectively. The different sources varied in these months due to the COVID-19 and influenza A outbreaks, in which the use of drugs containing poppy straws and codeine was the main source, whereas the use of morphine analgesics remained relatively stable. Inventory analysis further demonstrated the reliability of the source contributions from the PMF model, and morphine was not abused in this city.


Subject(s)
Alkaloids , Noscapine , Papaver , Morphine/analysis , Wastewater , Papaverine/analysis , Thebaine/analysis , Noscapine/analysis , Reproducibility of Results , Codeine/analysis , Morphine Derivatives/analysis , Alkaloids/analysis
7.
Rapid Commun Mass Spectrom ; 38(13): e9760, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38682312

ABSTRACT

RATIONALE: The chemical constituents of traditional Tibetan medicines (TTM) can be identified using high-performance liquid chromatography and high-resolution mass spectrometry (HPLC-MS/MS) technique. However, the HPLC-MS/MS technique requires the sample to be pretreated and then separated using the specific liquid chromatography method, which is time consuming. This study developed a ballpoint electrospray ionization (BPESI) technique for analyzing the chemical constituents of Sbyor-bzo-ghi-wang. This technique is a simple and inexpensive method for the rapid identification of the chemical constituents of TTMs. METHODS: After the important parameters of the homemade BPESI device were optimized, the chemical constituents of Sbyor-bzo-ghi-wang were quickly identified without sample pretreatment. The raw data were converted to mzML file using MSConvert and then identified using SIRIUS 5 software. RESULTS: The results showed that 30 compounds were identified from Sbyor-bzo-ghi-wang, namely eight bile acids, six flavonoids, four alkaloids, three amino acids, and nine others. Compared to the ultra-high-performance liquid chromatography-Q/Orbitrap and high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS) technique, the BPESI technique identified almost similar types of compounds and also a comparable number of compounds. CONCLUSIONS: Compared with the traditional HPLC-MS/MS methods, the BPESI technique does not require complex sample pretreatment and subsequent chromatographic separation steps; also it consumes a small quantity of samples. Therefore, BPESI can be used for the qualitative analysis of the chemical constituents of Sbyor-bzo-ghi-wang.


Subject(s)
Medicine, Tibetan Traditional , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Flavonoids/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Alkaloids/analysis , Alkaloids/chemistry , Bile Acids and Salts/analysis , Bile Acids and Salts/chemistry , Amino Acids/analysis , Amino Acids/chemistry , Plant Extracts/chemistry
8.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675582

ABSTRACT

Piper betle leaf powder is increasingly utilised as a health supplement. In this study, P. betle leaves were subjected to four different drying methods: convective air-drying, oven-drying, sun-drying, and no drying, with fresh leaves as control. Their antioxidant properties were then evaluated using colourimetric assays and GC-MS. Results showed that the sun-dried leaves had the highest (p < 0.05) total antioxidant capacity (66.23 ± 0.10 mg AAE/g), total polyphenol content (133.93 ± 3.76 mg GAE/g), total flavonoid content (81.25 ± 3.26 mg CE/g) and DPPH radical scavenging activity (56.48 ± 0.11%), and the lowest alkaloid content (45.684 ± 0.265 mg/gm). GC-MS analysis revealed that major constituents of aqueous extracts of fresh and sun-dried P. betle leaves were hydrazine 1,2-dimethyl-; ethyl aminomethylformimidate; glycerin; propanoic acid, 2-hydroxy-, methyl ester, (+/-)-; and 1,2-Cyclopentanedione. In conclusion, sun-dried leaves exhibited overall better antioxidant properties, and their aqueous extracts contained biologically active phytoconstituents that have uses in various fields.


Subject(s)
Antioxidants , Desiccation , Piper betle , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Piper betle/chemistry , Plant Extracts/chemistry , Desiccation/methods , Flavonoids/chemistry , Flavonoids/analysis , Polyphenols/chemistry , Polyphenols/analysis , Gas Chromatography-Mass Spectrometry , Alkaloids/chemistry , Alkaloids/analysis
9.
Se Pu ; 42(4): 311-326, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38566420

ABSTRACT

Ion chromatography (IC) is a novel high performance liquid chromatographic technique that is suitable for the separation and analysis of ionic substances in different matrix samples. Since 1975, it has been widely used in many fields, such as the environment, energy, food, and medicine. IC compensates for the separation limitations of traditional gas chromatography and high performance liquid chromatography and can realize the qualitative analysis and quantitative detection of strongly polar components. This chromatographic technique features not only simple operations but also rapid analysis. The sensors used in IC are characterized by high sensitivity and selectivity, and the technique can simultaneously separate and determine multiple components. Several advances in IC instrumentation and chromatographic theories have been developed in recent years. IC can analyze various types of samples, including ions, sugars, amino acids, and organic acids (bases). Chinese herbal medicines are typically characterized by highly complex chemical compositions and may contain carbohydrates, proteins, alkaloids, and other active components. They also contain toxic residues such as sulfur dioxide, which may be produced during the processing of medicinal materials. Therefore, the analysis and elucidation of the precise chemical constituents of Chinese herbal medicines present key problems that must be resolved in modern Chinese herbal medicine research. In this context, IC has become an important method for analyzing and identifying the complex components of Chinese herbal medicines because this method is suitable for detecting a single active ingredients among complex components. This paper introduces the different types and principles of IC as well as research progress in this technique. As the applications of IC-based methods in pharmaceutical science, cell biology, and microbiology increase, further development is necessary to expand the applications of this technique. The development of innovative techniques has enabled IC technologies to achieve higher analytical sensitivity, better selectivity, and wider application. The components of Chinese herbal medicines can be divided into endogenous and exogenous components according to their source: endogenous components include glycosides, amino acids, and organic acids, while exogenous components include toxic residues such as sulfur dioxide. Next, the applications of IC to the complex components of Chinese herbal medicines in recent decades are summarized. The most commonly used IC technologies and methods include ion exchange chromatography and conductivity detection. The advantages of IC for the analysis of alkaloids have been demonstrated. This method exhibits better characteristics than traditional analytical methods. However, the applications of IC for the speciation analysis of inorganic anions are limited. Moreover, few reports on the direct application of the technique for the determination of the main active substances in Chinese herbal medicines, including flavonoids, phenylpropanoids, and steroids, have been reported. Finally, this paper reviews new IC technologies and their application progress in Chinese herbal medicine, focusing on their prospects for the effective separation and analysis of complex components. In particular, we discuss the available sample (on-line) pretreatment technologies and explore possible technologies for the selective and efficient enrichment and separation of different components. Next, we assess innovative research on solid-phase materials that can improve the separation effect and analytical sensitivity of IC. We also describe the features of multidimensional chromatography, which combines the advantages of various chromatographic techniques. This review provides a theoretical reference for the further development of IC technology for the analysis of the complex chemical components of Chinese herbal medicines.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Drugs, Chinese Herbal/analysis , Sulfur Dioxide/analysis , Alkaloids/analysis , Chromatography, High Pressure Liquid , Ions , Medicine, Chinese Traditional
10.
Mikrochim Acta ; 191(5): 286, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38652378

ABSTRACT

A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable "hot spots" is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.


Subject(s)
Metal Nanoparticles , Plants, Edible , Plants, Medicinal , Silver , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Plants, Medicinal/chemistry , Silver/chemistry , Plants, Edible/chemistry , Limit of Detection , Phytochemicals/analysis , Phytochemicals/chemistry , Reproducibility of Results , Alkaloids/analysis
11.
Talanta ; 274: 125923, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569366

ABSTRACT

Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.


Subject(s)
Alkaloids , Brain , Mitragyna , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mitragyna/chemistry , Rats , Brain/metabolism , Brain/diagnostic imaging , Alkaloids/pharmacokinetics , Alkaloids/analysis , Alkaloids/chemistry , Male , Ions/chemistry , Tissue Distribution , Rats, Sprague-Dawley
12.
Food Chem Toxicol ; 186: 114589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467298

ABSTRACT

Tropane alkaloids (TA) are natural toxins found in certain plants, including cereals, of which atropine and scopolamine are the main species of concern due to their acute toxicity. This study aimed to determine the occurrence of TA in cereal foods and assess the potential health risks associated with their consumption in Korea. TA levels were analyzed in 80 raw and 71 processed cereal samples, which were distributed throughout Korea in 2021, using ultra-performance liquid chromatography-tandem mass spectrometry. At least one of the six TA species, namely atropine, scopolamine, pseudotropine, tropinone, scopine, and 6-hydroxytropinone, was detected in 10 out of the 151 samples at levels ranging from 0.12 to 88.10 µg kg-1. Dietary exposure (mean, 0.23 ng kg-1 bw day-1) to atropine and scopolamine in the Korean population was estimated to be low across all age groups. This is despite considering worst-case scenarios using the total concentrations of atropine and scopolamine in a millet sample, both of which were detected, and 95th percentile consumption for consumers of millet only. Both the hazard index and margin of exposure methods indicated that the current levels of TA exposure from millet consumption were unlikely to pose significant health risks to the Korean population.


Subject(s)
Edible Grain , Tropanes , Atropine , Edible Grain/chemistry , Republic of Korea , Risk Assessment , Scopolamine/toxicity , Tropanes/analysis , Tropanes/chemistry , Alkaloids/analysis , Alkaloids/chemistry
13.
Food Chem ; 448: 139088, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547707

ABSTRACT

The duration of storage significantly influences the quality and market value of Qingzhuan tea (QZT). Herein, a high-resolution multiple reaction monitoring (MRMHR) quantitative method for markers of QZT storage year was developed. Quantitative data alongside multivariate analysis were employed to discriminate and predict the storage year of QZT. Furthermore, the content of the main biochemical ingredients, catechins and alkaloids, and free amino acids (FAA) were assessed for this purpose. The results show that targeted marker-based models exhibited superior discrimination and prediction performance among four datasets. The R2Xcum, R2Ycum and Q2cum of orthogonal projection to latent structure-discriminant analysis discrimination model were close to 1. The correlation coefficient (R2) and the root mean square error of prediction of the QZT storage year prediction model were 0.9906 and 0.63, respectively. This study provides valuable insights into tea storage quality and highlights the potential application of targeted markers in food quality evaluation.


Subject(s)
Camellia sinensis , Food Storage , Metabolomics , Tea , Tea/chemistry , Multivariate Analysis , Camellia sinensis/chemistry , Discriminant Analysis , Catechin/analysis , Catechin/chemistry , Amino Acids/analysis , Amino Acids/chemistry , Alkaloids/analysis , Alkaloids/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Plant Extracts/analysis
14.
Food Chem ; 447: 138743, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38452535

ABSTRACT

Nitraria roborowskii Kom (NRK), with high economic and ecological value, is mainly distributed in the Qaidam Basin, China. However, research on its chemical components and bioactivities is still rare. In this study, its chemical constituents (52) including 10 ß-carboline alkaloids, nine cyclic peptides, three indole alkaloids, five pyrrole alkaloids, eight phenolic acids and 17 flavonoids were identified tentatively using UPLC-triple-TOF-MS/MS. Notablely, one new ß-carboline alkaloid and five new cyclic peptides were confirmed using MS/MS fragmentation pathways. In addition, experiments in vitro indicated that NRK-C had strong maltase and sucrase inhibitory activities (IC50 of 0.202 and 0.103 mg/mL, respectively). Polysaccharide tolerance experiments confirmed NRK-C (400 mg/kg) was associated with decreased postprandial blood glucose (PBG) in diabetic mice. These results suggested that NRK fruit might be used as a functional ingredient in food products.


Subject(s)
Alkaloids , Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Mice , Animals , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , alpha-Glucosidases/analysis , Fruit/chemistry , Sucrase , Alkaloids/analysis , Phenols/analysis , Carbolines/analysis , Peptides, Cyclic/analysis , Drugs, Chinese Herbal/analysis
15.
Talanta ; 274: 125983, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537350

ABSTRACT

The utilization of deep eutectic solvents (DES) in sustainable extracting and separating of phytochemicals shows promising prospect. An exceptionally fast, eco-friendly, and sustainable approach was proposed for extracting bioactive compounds from Coptidis Rhizoma based on deep eutectic solvent-based ultrasound-assisted matrix solid phase dispersion (DES-UA-MSPD). Single-factor experiments and Box-Behnken design were utilized to explore the optimal extraction conditions. The analysis indicated that the acidic DES, especially betaine-acrylic acid (Bet-Aa 1:4 mol/mol) with 50% water content, was proved to be the most effective medium for the extraction of alkaloids (magnoflorine, groenlandicine, coptisine, epiberberine, berberine and palmatine) and organic acid (chlorogenic acid). With the parameters optimized, the total maximum extraction yield of alkaloids and organic acids reached 128.83 mg g-1 applying the optimal DES, which was 1.33-5.33 folds higher than conventional extraction solvents. Additionally, through microstructure analysis using scanning electron microscopy, density functional theory , and frontier molecular orbitals theory, a deeper understanding of the extraction principle was gained, and the molecular mechanism of DES synthesis and the interactions between target compounds were systematically elucidated. The sustainable and green potential of the DES-UA-MSPD method was demonstrated through Green Analytical Procedure Indexanalysis. The overall results of this investigation revealed that the proposed technology was a highly promising and sustainable alternative for effective extraction and quantification of natural products.


Subject(s)
Alkaloids , Deep Eutectic Solvents , Alkaloids/analysis , Alkaloids/chemistry , Alkaloids/isolation & purification , Chromatography, High Pressure Liquid/methods , Deep Eutectic Solvents/chemistry , Ultrasonic Waves , Green Chemistry Technology/methods , Solid Phase Extraction/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Coptis chinensis
16.
Clin Toxicol (Phila) ; 62(1): 56-60, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38348840

ABSTRACT

INTRODUCTION: The death of Socrates in 399 BCE is described in Plato's dialogue, the Phaedo, written an unknown time afterwards from accounts by others. THE EVIDENCE: Socrates' death has almost always been attributed to his drinking an extract of poison hemlock, Conium maculatum, despite apparent discrepancies between the clinical features described in classical translations of the Phaedo and general clinical experience of poisoning with the toxic alkaloids it contains. EVALUATION: Recent acute philological analysis of the original Greek text has resolved many of the discrepancies by showing that the terms used in the classical translations were misinterpretations of the clinical signs described. It is also likely that the unpleasant clinical effects, such as vomiting, abdominal pain, diarrhoea and muscle fasciculation commonly described in modern reports of poison hemlock poisoning, were not mentioned to present the death of Socrates in a way consistent with his philosophical ideals and those of his pupil Plato. CONCLUSIONS: Seen in this way, the death of Socrates can be accepted as a limited case report of Conium maculatum poisoning. Even after reaching that conclusion, intriguing scientific questions remain about the toxicity of the coniine alkaloids and the mechanisms of their effects.


Subject(s)
Alkaloids , Plant Poisoning , Humans , Alkaloids/analysis , Conium , History, Ancient , Plant Poisoning/etiology , Plant Poisoning/diagnosis
17.
Sci Rep ; 14(1): 5062, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38424458

ABSTRACT

P. longum L., one of the most significant species of the genus Piperaceae, is most frequently employed in Indian-Ayurvedic and other traditional medicinal-systems for treating a variety of illnesses. The alkaloid piperine, is the key phytoconstituent of the plant, primarily responsible for its' pharmacological-impacts. The aim of the study is to analyse the intra-specific variation in piperine content among different chemotypes (PL1 to PL 30) and identify high piperine yielding chemotype (elite-chemotype) collected from 10 different geographical regions of West Bengal by validated HPTLC chromatography method. The study also focused on the pharmacological-screening to better understand the antioxidant activity of the methanol extracts of P. longum by DPPH and ABTS radical-scavenging activity and genotoxic activity by Allium cepa root tip assay. It was found that the P. longum fruit chemotypes contain high amount piperine (highest 16.362 mg/g in chemotype PL9) than the stem and leaf chemotypes. Both DPPH and ABTS antioxidant assays revealed that P. longum showed moderate radical-scavenging activity and the highest activity was found in PL9 (fruit) chemotype with IC50 values of 124.2 ± 0.97 and 104 ± 0.78 µg/ml respectively. The A. cepa root tip assay showed no such significant genotoxic-effect and change in mitotic-index. The quick, reproducible, and validated HPTLC approach offers a useful tool for determining quantitative variations of piperine among P. longum chemotypes from different geographical-regions and also according to the different tissues and choose elite genotypes with high piperine production for continued propagation and commercialization for the pharmaceutical sector. Additionally, the plant's in-vitro antioxidant property and lack of genotoxicity directly supports its' widespread and long history of use as a medicinal and culinary plant.


Subject(s)
Alkaloids , Benzothiazoles , Piper , Piperidines , Polyunsaturated Alkamides , Sulfonic Acids , Plant Extracts/pharmacology , Plant Extracts/chemistry , Piper/chemistry , Antioxidants/pharmacology , Alkaloids/pharmacology , Alkaloids/analysis , Benzodioxoles/pharmacology
18.
Fitoterapia ; 174: 105843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301937

ABSTRACT

In this research, five new indolequinazoline alkaloids (1-5), along with six known indolequinazoline alkaloids (6-11) were obtained from the fruits of Tetradium ruticarpum. Their structures were elucidated through comprehensive spectroscopic data of 1D and 2D NMR, HRESIMS and ECD spectra. Additionally, all isolates were assayed for their SIRT1 inhibitory activities in vitro and compounds 2, 7, 10 and 11 exhibited activities with IC50 values ranged from 43.16 to 118.35 µM.


Subject(s)
Alkaloids , Evodia , Evodia/chemistry , Fruit/chemistry , Molecular Structure , Alkaloids/analysis , Magnetic Resonance Spectroscopy
19.
J Food Sci ; 89(4): 1835-1864, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38407443

ABSTRACT

Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.


Subject(s)
Alkaloids , Trigonella , Humans , Functional Food , Trigonella/chemistry , Plant Extracts/chemistry , Alkaloids/analysis , Antioxidants/analysis , Dietary Supplements , Seeds/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis
20.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38320313

ABSTRACT

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Subject(s)
Alkaloids , Endophytes , Epichloe , Festuca , Lolium , Polyamines , Alkaloids/metabolism , Alkaloids/analysis , Endophytes/chemistry , Endophytes/physiology , Epichloe/chemistry , Epichloe/physiology , Ergotamines/metabolism , Festuca/microbiology , Festuca/physiology , Herbivory , Heterocyclic Compounds, 2-Ring , Indole Alkaloids/metabolism , Lolium/microbiology , Lolium/physiology , Mycotoxins , Plant Defense Against Herbivory , Poaceae/microbiology , Poaceae/metabolism , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...